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We set up adaptive control algorithms which can be used to achieve control to desired attractors in spatially
extended systems. Traditional adaptive control methods often fail in such systems due to the presence of
multiple coexisting attractors that lead to a high probability of the system getting trapped in an undesired
attractor despite the application of control. We use quenching techniques to achieve control in such difficult
scenarios. When the control parameter evolves through parameter regions that lead to undesired attractors, the
control parameter is changed sufficiently fast so that the system does not get time to get trapped in these
attractors, but gets quenched instead to the desirable attractor. The rate of change of the parameter is guided by
using variable stiffness of control. We demonstrate the efficacy of our technique in a system of coupled
sine-circle maps. Further, such variable stiffness schemes can also be used to step up the efficiency of adaptive
control algorithms by making frequent suitable changes in the stiffness of control during the control dynamics.
This strategy is very successful in reducing the time required to achieve control, while maintaining the stability
of the control dynamics.
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Considerable recent research effort has focused othe difference between the goal output and the actual output
mechanisms of control in strongly nonlinear systems whictof the system. The error signal drives the evolution of the
typically display a diversity of dynamical behavior in param- parameters which readjust so as to reduce the error to zero.
eter space. Such methods aim to reach and maintain a fixégpecifically, in a general-dimensional nonlinear dynamical
dynamical activity(the “target”) in systems intrinsically ca- system described by the evolution equatiés F(X;u;t),
pable of very complicated behavipt—8]. In addition to at- whereX=(X;,X,, ... ,Xy) are the state variables andis
tempts directed towards controlling low-dimensional nonlin-the parameter whose value determines the nature of the dy-
ear systemg1-4], substantial efforts have gone into the namics, the adaptive control applies a feedback loop in order
control of spatiotemporal behavior in extended systemso drive the system paramet@r parameteisto the valugs)

[5-8]. These range from the stabilization of periodic patterngequired, so as to achieve a desired target state via the equa-
in optical turbulencd5] and the selection of spatiotemporal tion

current densities in semiconductof§] to the control of

buckling beam systems using smart maftéf and the tar- = *_

. . . u=y(P*=P), 1)
geting of spatiotemporal patterns in coupled map latti8gs

The control problem is partiqu]arly difficu_lt .in extended whereP* is the target value of some variable or property
systems that POSSESS a multlpI|C|Fy of coexisting gttrgctors(which could be a function of several variablesnd the
The reason fqr Fh's is that to obtain the target, Wh'Ch IS ONQalue of y indicates thestiffness of controlHere theerror
of these coexisting attractors, the control dynamics not onl

need to evolve to the desired parameter values, via metho ignal’P* —P drives the system to the target state. The con-
; p S ol stiffnessy regulates the strength of feedbaakd thus,
such as adaptive contrdl], but it must evolve in such a way

that the state of the system either remains in the basin Ogetermines how rapidly the system is controllédhen the
. y ._system achieves the target the control equation “switches
attraction of the targeted state, or evolves to the appropriat

basin of attraction. We indicate below a potent method for fi" (as the error signal becomes zpro
achieving control in such difficult control situations. In this
method the rate of change of parameter in different regions VARIABLE STIFFNESS ALGORITHMS
of parameter space is guided by varying the “stiffness” of TO ACHIEVE QUENCHING
control, such that the control parameter is evolved very fast
through parameter regions, which might settle down to un- In situations where a system has to traverse large param-
desired attractors so that the system is rapidly “quenched’gter regions where it can get trapped in undesirable attractor
to the desired attractor. basins enroute to the target, traditional adaptive control
First, let us recall the adaptive control algorithm, pro- methods as stated above will fail, but variable stiffness can
posed in Ref[1] and developed and extended in R¢&-5]  still make control achievable. The basic idea is to guide the
and[8]. The procedure utilizes an error signal proportional tosystem very quickly through treacherous terrédig increas-
ing the stiffness of contrplso that it is “quenched” to the
basin of attraction of the target state. Once inside the control
*Email address: sudeshna@imsc.ernet.in basin, i.e., the set of initial points from which fixed stiffness
TEmail address: gupte@chaos.iitm.ernet.in control is achievable, the stiffness is lowered so that the sys-
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order to have greater utility in experimental applications.

| S2T1 | S1T1 | S2T2 | Further, it must not be measurement intensive, i.e., it must
not entail monitoring a large number of sites. In fact, here we
0.0 € 1.0 will only use information from aingle (arbitrary) site for the

necessary feedback.
As a representative example, we demonstrate the control
FIG. 1. Schematic diagrarfto scalg showing the phases for Procedure on the coupling parameterwhich implies the
SCML, with respect to coupling parameter(for Q=0, K=1),  following:
obtained from spatial period two initial conditions,
c XXX Xs ..., With Xy +X,=1.0.

For 0=0. K=1

€n+1= €n— Y X SOM €mig— €n) X (AX—AX*), 4

tem does not oscillate wildly about the target and leave the

control basin again. with Ax* being the target value of the local expansionlike
We demonstrate this control principle in a lattice of quantityAx. The factor sgné,iq— €,) takes care of the sign

coupled sine-circle maps targeting different spatiotemporabf the control feedback, witle,;q being a very rough esti-

behaviors[8]. This system is capable of exhibiting a rich mate of the mid-point of the parameter region sup-

variety of spatiotemporal patterd8], including coexisting porting the targeted state. In order to target S2Tk

basins of attractioi10], and thus provides a good testing =|x,, ;(i.+1)—X,(ic)| and for control to a S2T2 state,

ground for the technique. Note that the method is quite genAx=|x, (i) —x,(ic)|, wherei. is asingle (arbitrary lat-

eral and can be directly applied to other extended systems @ge site monitored for feedback. These error signals distin-

well. _ _ _ ~guish clearly between the targets and are not satisfied by any
The time evolution of a coupled sine-circle map lattice of the spatiotemporal behavior, other than the targeted one.
(SCML) is given by Now this is a difficult control situation, as the multiplicity

of coexisting attractors here implies that reaching the right
parameter is not enough to ensure control. For instance, in
the parameter region supporting the S2T1 and S2T2 states,
) the fixed point is also a stable state with a very large basin of
+HQKx,(i+1)]}  Mod1, (2)  attraction. In fact, any generic random initial condition will
go to a synchronized fixed point. Only period 2 initial lattices
wheren is the discrete time index anids the site indexi(  will be attracted to the S2T1 or S2T2 states. Thus, conven-
=1,... N, whereN is the lattice sizg The local map is tional control fails in such cases. For example, if the S2T2
phase is targeted from the S2T1 region of parameter space or
vice versa(with the initial state in the basin of attraction of
the spatial period two statecontrol cannot be achieved due
to the large intervening fixed point reginieee Fig. 1 in
where 0sx=<1. K indicates the strength of the nonlinearity which the state is unable to escape synchronization. The
and e gives the strength of coupling among neighbors. Theusual method of using noise to jolt the system out of undes-
system supports various dynamical phases, such as the syired trapping basins enroute to the target does not work here,
chronized fixed point, i.e., spatial period 1 temporal period las these basins are quite extensive in parameter space and
(S1TY), spatial period 2 temporal period($2TJ), and spa- Vvery stable. Thus the only way to achieve the desired target
tial period 2 temporal period 2S2T2. Figure 1 schemati- is to quenchthe system so that the system does not have time
cally shows a slice o& parameter spac@vith Q=0K=1), to respond to the changed parameter by settling down to the
demarcating the regions of stability of the S2T2, S2T1, andundesired synchronized fixed point. This quenching is
S1T1 solutions obtained from period 2 initial conditiqsee  achieved using large stiffness of control.
Ref.[9] for a detailed phase diagranimportantly, note that In our method we start the control procedure with very
these S2T1 and S2T2 regions coexist with the S1T1 solutiodarge initial stiffness and then use the following algorithm to
which in fact has a very large basin of attraction. This makegnaintain an acceptable level of stiffnes§) Estimate the
conventional adaptive control methods unfeasible for targeteontrolled parametes with initial stiffnessy, (v, large); (ii)
ing the S2T1 and S2T2 states in this system, as the contrdlest: if the estimated is not in the rangee,,, < €< €pign,
basin for these states is very small. Since the control diffireduce stiffnes§y in Eq. (4)] by a predetermined factdfor
culties encountered here are representative of the generigstance, reduce to half(iii) Repeat untile,,<e<epign-
problems arising due to coexisting attractors in extended sysFhe only inputs in this algorithm are the limiting bounds for
tems that display hysteresis, we will use this situation as #he controlled parametes,;;, ande,,, . These can be easily

Xn+1(i):(1_5)f[QaKvXn(i)]+g{f[KXn(i -1)]

K
f(x,Q,K)=x+Q—Esin(21-rx), 3

test-bed for the quenched adaptive feedback mefthp set to be the limiting values of the parameter, e.g., in this
To target spatiotemporal patterns we must use spatial aasee,,, is naturally 0O andepg, is 1.
temporal feedback*— P, specifically tailored for the dis- Now this variable stiffness algorithm can effectively take

tinctive characteristics of the desired targeted pattern. In adhe system from the S2T2 state to the control basin of the
dition, the feedback should be simply defined, without thetargeted S2T1 state by adjusting the controlled parameter
explicit knowledge of the system’s equations of motion, inso fast that the system does not have a chance to synchronize
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1 T not used during runtime. Moreover, in the case of real ex-
periments, this knowledge is readily obtainable, even in the

absence of a model.
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n n ery) time 7, defined as the time required to reach the desired

FIG. 2. (a) Plots of the evolution ofx,(i,) and x,(i.+1)  State within finite precision, is crucially dependent on the
(dashed lings wherei, is the monitored site, as well ag (bold ~ Value of stiffnessy. While for small y the control time is
line), for control to the S2T1 state of a SCML via the quenching inversely proportional toy [3], beyond an optimal stiffness,
algorithm. Here, initiale,=0.9 (i.e. in the S2T2 regime v, in most systems, increasing actually retards recoveryor
=0.4, €mig~0, andAx* =0.75.(b) Plots of the evolution ot and  renders the control dynamics unstalas the system swings
v, for control to the S2T2 state of a SCML via the quenchingwildly about the target without ever being “damped” onto
algorithm. Here, initial ,=0.1 (i.e. in the S2T1 regime yo  the targe{2,3]. So there is drade-off between stability and
=0.5, €mig—1, andAx* =0.75. The initial lattice R=100) has  speed of controlThis crucial dependence of control times on
spatial period two in both cases. the stiffness of control is the key behind our scheme to en-

hance the efficacy of the adaptive control algorithm by tun-
and get trapped in the fixed point regi¢see Fig. 2 The ing stiffnessy to some optimal value at each point in the
control is achieved in only-20 steps. control path. _ o

In a similar fashion, the method successfully takes a sys- 1he Principal idea is as follows: we would like eptimize
tem from the S2T1 state to the S2T2 state, by rapidly dragP'09ress towards the goal by making frequent suitable
ging the system into the control basin of the targeted region(.:hanges In the stifiness of cqntrmh(_e purpose Is to achleve_
Complete control is again achieved-r20 stepgsee Fig. & a predetermined accuracy in minimum time. This entails

Note that the control time is quite the same for lattices Ofmonltormg at each step how far we can safely Increase the
different sizes value of y for the next step. Two distinct strategies can be

W th te that whil i irol d employed to achieve thigi) Start with very low control
€ must however note thal while run-time control doeSg;ittnagg (which is guaranteed to yield stable conjraind
not necessitate computations based on dynamical equationScrease it to the maximum acceptable levil Start with

it_is necessary at the outset to chart out the rough bifurcatiooery high control stiffness and then come down to an accept-
diagram of the system. Indeed, one cannot gaugené®  pje |evel. The implementation of both strategies involve a
for quenching without some knowledge of the layout of theet \which returns information on the error incurred in taking
dynamical phases and their basins of attraction in paramete]a]righer y. It is achieved here via two schemes, which we
space. However, this knowledge need not be detailed and Sgain demonstrate on the SCML, targeting a spatiotemporal
fixed point(S1TJ.
I Specifically, for instance, to reach and maintain the S1T1,
r T one can employ the following control strategy: here the tar-
| 1 get is X, 1(1) —X,(1)=0 and x,(i+1)—x,(i)=0 for all
0.8 _\_ sitesi at all timesn. We can choose the spatial propefy
- =X,(i +1)—x,(i), for control to the synchronized state as it
1 distinguishes between S1T1 and the neighboring S2T1 state
"‘IIL (0 1 [which, while having the property,, (i) —x,(i)=0, has
I -] X,(i+1)—x,(i)#0]. The controlled parameter then
L (1) _ evolves gtilizing an error signan,_giver] by Ax_:xn(iC
- . +1)—xy(i.), wherei, is the single site being monitored for
0.4 - feedback for adaptive control.
Significantly, this method can be implemented without
i explicit computation of the dynamics during run-time con-
ot Lo Ly 0 | trol, and just one sitéand its local neighborhogds moni-
0 100 200 300 tored to obtain the required feedback, and this is capable of
time n regulating the entire lattice. On this adaptive algorithm we
FIG. 3. Plots of the evolution of from initial €,=0.9, for ~ can implement schemes | and Il for varying stiffnegsn
control to the S1T1 state of a SCMINE 100) via variable stiffness  order to reduce control time without compromising stability.
schemes (long dash and Il (short dash and via the fixed stiffness Scheme lIn this method, at every point in the control
algorithm (solid line). Initial vy, is 0.001 in scheme | and 5 in dynamics we set control stiffness at some very low value and
scheme II. then increase it to the maximum acceptable level at that
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point. An estimate of the error incurred by taking higheralgorithm: (i) Set control stiffnesg to some high valuey;
stiffness is obtained by using a “local lyapunov’-like expo- (ii) Estimate the value of the subsequent adjustment in the
nent. If this is within a preassigned acceptable limit of accucontrolled parametek, obtained via,e’=e,— y[AXy(ic)

racy we increase the stiffness of control for the next adaptive- Ax*7; (i) If €’ is larger thaneyign Or less thargq,,, then
control step. The idea then is that one cannot estimate the_, ,/2: (iv) Go to step 2 and repeat step 3 if necessary.
acceptable level of stiffness priori, and thus starts from a  Extensive numerics clearly show the success of the above
very low level which guarantees stable control and lets theyrategy. Though the stiffness adjustments are infrequent, re-
algorithm find an acceptably high stiffness as the systemyery times are improved dramatically. For instance, con-

evc_i_lvgs. | tthi | strat tilizino knowled trol of S1T1 from a random initial lattice witle=0.9, now
0 Implement this general strategy utiizing Knowledge . es only~11 iterations(see Fig. 3. Note that the control

of the evolution equationd.e., using only the time series time is quite the same for lattices of different sizes
data of a particular variable, we do the followin(@: Initiall . ) o
P "9 y Thus, both of these variable stiffness control algorithms

choose a small stiffnesg= vy, with yo—0. Small y guar- . .
anteesstable successful control even if very siggl; (ii) If ~ "ave the desired effect of tuning the valueybo that the -
controlled dynamics yields a spatiotemporal fixed point in

| yX[Xp(ic) —Xn_1(ic) ]| <8 where s is a predetermined ac- *“ ) ‘ ;
curacy, we doubley (note that|x,(i.) —x,_4(ic)| is “local times much shorter than that required for fixed stiffness al-

lyapunov’-like factor and indicates the “local chaos” or 9orithms. _ _
“local expansion properties” at the current phase point in !N summary, we have suggested how variable stiffness

the control pati[11]); (i) Repeat step 2 till the accuracy adaptive control algorithms can be used to achieve control in
requirement is violated. situations where control fails with fixed control stiffness,

Extensive numerics indicate that control times are im-such as in the presence of coexisting attractors, a phenomena
proved dramatically by the method. For instance, startingvidespread in extended systems. In such difficult control
with y,=0.001, control time with a fixed stiffness algorithm scenarios we use variable stiffness to guide the rate of
is ~225, while this variable stiffness algorithm yields con- change of the parameter and achieve control by changing the
trol in times of the order of ten stefgsee Fig. 3. parameter sufficiently fast so that the system does not have

Scheme IIThis scheme is very simply stated as follows: time to get trapped in any undesired attractor. Further, we
an estimate of the controlled parametein Eq.(1)] is made show how such variable stiffness schemes can be used to
and if this estimate exceeds a preassigned upper or lowstep up the efficiency of control by making frequent suitable
bound, the stiffness is reduced, or else it's kept at the originathanges in the stiffness of control, resulting in huge gains in
high value. Thus, we start with very high control stiffnessefficiency vis-a-vis fixed control stiffness algorithms. Our
and then come down to a level in keeping with the demandsnethods are simple and can be implemented without detailed
of stability and the operational range of parameter—phasknowledge of the system. We therefore hope they will be of
space. Specifically then, we vary stiffness by the followingutility in practical contexts.
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